
Abstract — An inverse problem of defects reconstruction in 

a metallic plate from the multi-frequency eddy current data is 

investigated. The application of a multi-frequency excitation 

for a different position of a sensor versus the region of interest 

enables to obtain more information on the inhomogeneity 

included in the measurement signal. In order to avoid the 

parameterization of a reconstructed shape, the more universal 

method, especially from a topological viewpoint, might be used. 

Developing such a numerical technique that can handle 

topology changes is very important for the defect 

reconstruction. Therefore, during an iterative optimization 

based on the regularized Gauss-Newton algorithm, the shape 

of a crack and its evolution was represented by the level sets of 

a continuous function φ called the level set function. For the 

purpose of the gradient calculation, the numerically very 

effective Tellegen’s method of an adjoint model was applied. In 

this way, the accuracy of an applied inverse methodology as 

well as its robustness against an experimental noise have been 

improved. Numerical tests show the effectiveness of the 

algorithm for single inhomogeneity as well as in the case of 

multiple anomalies in a tested object. Finally, the application of 

both approaches to shape reconstruction by defect 

parameterization and level sets representation is presented.  

I. INTRODUCTION 

Non-destructive evaluation of conductive objects using 

the Eddy Current Testing (ECT) method has found a wide 

application in various fields of industry such as energy, 

automotive, marine, aeronautic, and manufacturing. From a 

practical viewpoint, especially the inverse problem of the 

crack and defects detection like metal-loss regions produced 

by corrosion, stress, fatigue seems to be a very important 

issue. Therefore, in this paper we develop the level sets-

based methodology to solve the inverse problem of a 

material structure recognition arising from the Eddy Current 

Tomography. We investigate the case where the spatial 

conductivity distribution σ(x) is a piecewise constant 

function represented by level set functions, with a 

possibility that the conductivity values inside the defects are 

treated also as unknown. Since the inverse problem of 

defect reconstruction is highly ill-posed, we introduce the 

regularization techniques such as the total variation norm of 

σ(x) and Tikhonov stabilizing term β. 

To knowledge of the authors, this powerful and versatile 

method of topology optimization based on sets level 

approach has not, until now, been applied in the Finite 

Element (FE) application for the purpose of defects 

reconstruction from the ECT signal.  

 

Fig. 1.  The ECT system for crack reconstruction.  

II. FORWARD PROBLEM IN ECT 

In the case of ECT technique, the measurement of 

voltage or equivalently impedance of a pick-up coil at the 

different positions and for considerably varied frequency of 

the excitation current allows to reveal the information about 

the inhomogeneity such as its type, dimension and location. 

The used multi-frequency technique is especially useful 

when the defects inside of a thick object or on the reverse 

side versus applied sensor are considered. The model of 

analyzed ETC setup with the matrix type sensor [1] is 

depicted in Fig.1.    

A. Mathematical model of ECT 

In this paper, we assume that for the frequency range of 

the excitation current, the skin depth is sufficiently small 

compared to the depth or curvature of the conducting 

region. Therefore, the surface impedance boundary 

condition (SIBC) can be applied [2]. In consequence, only 

Γ2 the surface of a conducting object with the conductivity 

satisfying σ(x) ≥ σ0 ≥ 0 can be discretized. In such case, the 

field distribution inside V a bounded domain in R
3
 with C

1
 

boundary ∂V is governed by the 3D scalar Poisson equation. 

Then, the magnetic potential u(x) inside V satisfies [3]  
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Here, T means the electrical vector potential while α stands 

for the converse of the propagation constant k
2
 = jωµσ.  
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B. Level set representation 

For the simplicity of description, we assume that Γ2 consists 

only of two different materials Ω1 and Ω2 with the electrical 

conductivities σ1 and σ2, respectively. Then, the interface 

between them Γ can be represented by a zero level set of φ. 

We take φ in such way that Ω1={x є Γ2 | φ(x) > 0} and  

Ω 2={x є Γ2 | φ(x) < 0}. Finally, σ(x) can be represented by 

( ) ( )( )1 2 2( ) ( ) 1 ( ) in ,H Hσ σ ϕ σ ϕ Γ= + −x x x          (4) 

where H(x) is the Heaviside function defined as H(x) = 1 

for x ≥≥≥≥ 0, and H(x) = 0 when x > 0. The derivative of H(x) 

is the Dirac delta function. As a level set function φ we 

employ a signed distance function, thus φ(x) = d(x,Γ) when 

x є Ω1 and φ(x) = -d(x,Γ) for x є Ω 2. The level set method, 

first proposed by [4] recently found a wide application in 

electrical engineering e.g. [5], [6] to the topology 

optimization problem.     

III. INVERSE PROBLEM IN EDDY CURRENT TOMOGRAPHY 

The inverse problem of defect reconstruction is 

provided by the minimization of a last-square functional of 

the data-model misfit F(φ,σ2) using level sets method in the 

Gauss-Newton algorithm. The gradient of the objective 

function is calculated basing on an adjoint model of 

Tellegen’s method.     

A. Tellegen’s adjoint method 

In the considered case, the sensitivity equation is given by 

[2] 
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Here, U means the voltage, the subscripts 1 and 2 refer to 

the original model defined by (1)-(3) and the adjoint model. 

The letter is based on (1) with (3) and (2) satisfying J2Sc = 1 

in the area of a pick up coil Sc. Finally, the sensitivity of the 

voltage in respect to the conductivity in e-th finite element, 

which lies in the plate, takes the form 
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where S
e
 stands for the field of the considered element. For 

a detailed description, see [3], [7].  

B. Incorporating level sets into Gauss-Newton algorithm 

The gradient of the objective function F with respect to σ, φ, 

σ2 takes the form 
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The above formulas from (6) to (9) allow to easily combine 

the level set methods to any step descent algorithm. 

IV. RESULTS OF SHAPE RECONSTRUCTION BY DEFECT 

PARAMETERIZATION APPROACH 

The objective of previous research conducted in [3] was 

to reconstruct the conductivity of a surface crack in a plate 

made of Inconel 600 based on the parameterization 

approach. The search area consisted of 168 finite elements. 

The FEM-SIBC simulation of ETC measurement was 

carried out using following parameters: J = 1MA/m
2
, 5 

number of exciting harmonic signal from 75 kHz to 200 

kHz with 30 dB noise, 25 movements of probe along 0x 

axis with ∆k = 0.5 mm. The applied mesh consists of NE = 

4800 finite elements, ND = 9471 nodes. Results of the 

identification process by means of the Gauss-Newton 

algorithm with TSVD are shown in Fig.2.  

 
Fig. 2. Course of the defect identification in FEM-SIBC model using 

noised syntactical data: a) the assumed conductivity distribution, b - d) the 

identified conductivity distribution after 3th, 5th and 9th iteration [3].  

V. CONCLUSION 

The application of the level set-based algorithm to the 

ECT problem enables to recover sharp interfaces without 

the necessity of explicit shape parameterization, also if 

noise is present in the synthetic data. For the purpose of the 

gradient calculation, the efficient method of Tellegen’s 

adjoint model is applied. This allows to reduce the 

computational complexity of defects identification 

procedures. 

VI. REFERENCES 

[1] T. Chady, M. Enokizono, T. Tokada, Y. Tsuchida, R. Sikora, “A 

family of matrix type sensors for Detection of Slight Flaws in 

conducting Plates,” IEEE Trans. on Magn., vol. 35, no. 5, 

 pp. 1093-1096, 1999.  

[2] S. Barmada , L. Di Rienzo, N. Ida and S. Yuferev, “The use of 

surface impedance boundary conditions in time domain problems: 

numerical and experimental validation,” ACES Journal, vol. 19,  

no. 2,  pp. 76-83,  2004. 

[3] K.M. Gawrylczyk, P. Putek. “Multi-Frequency Sensitivity Analysis 

of 3D Models Utilizing Impedance Boundary Condition with Scalar 

Magnetic Potential, “ IOS Press Advanced Computer Techniques in 

Applied Electromagnetic, vol. 30, pp. 64-67, 2008. 

[4] S.J. Osher, J.A. Sethian, “Fronts propagating with curvature 

dependent speed: algorithms based on Hamilton-Jacobi 

formulations,”J. Comput. Phys. vol. 79, pp. 12-49, 1988. 

[5] Y.S. Kim; I. H. Park, “Topology Optimization of Rotor in 

Synchronous Reluctance Motor Using Level Set Method and Shape 

Design Sensitivity,” IEEE Trans. on Magn., vol.20, no.3, 

 pp. 1093-1096, 2010. 

[6] N. Irishina, M. Moscoso, O. Dorn, “Microwave Imaging for Early 

Breast Cancer Detection Using a Shape-based Strategy,” IEEE 

Transactions on Biomedical Engineering, vol.56, no.4, pp.1143-

1153, 2009.  

[7] D.N. Dyck, D.A. Lowther, “A Method of Computing the Sensitivity 

of Electromagnetic Quantities to Changes in Material and Sources,” 

IEEE Trans. on Magn., vol.30, no 5, pp. 3415-3418, 1994. 


